Personal Robot 2(PR2)[5]是Willow Garage開發的移動式操作機器人平台(如圖2(a)),它配備兩個兼容7自由度機械臂和機械手,在頭部、胸部、肘部、夾爪上分別安裝有G分辨率攝像頭、激光測距儀、慣性測量單元、觸覺傳感器等豐富的傳感設備,通過底部的四輪移動平台可無限擴展其作業範圍,提供基於Ros係統的仿真環境,可模擬開門、打台球和畫畫等複雜操作,適用於科研的實驗平台。Welschehold[6]在PR2實現了從人的開門操作動作示教中學習移動底盤的運動方式以及夾持器的操作姿態,作者將機器人的學習分為三個部分的軌跡預測包括示教者的手部運動軌跡、示教者的身體移動軌跡以及被操作物體的運動軌跡,後通過超圖優化方式的來預測機器人底盤運動和操作機械臂的運動軌跡(如圖2(b)-(d))。
Cosero是德國波恩大學的Sven Behnke團隊根據家庭環境中的日常操作任務而研製的一款仿人操作機器人基於深度學習方法的目標姿態估計和RGB-D SLAM等感知測量
機器人、無人機、自動駕駛汽車等加快落地,智慧城市深入建設,更是為傳感器產業帶來了難以估量的龐大機遇
中國移動聯合產業合作夥伴發布《室內定位白皮書》,對室內定位產業發展現狀及麵臨的挑戰,深入分析了垂直行業的室內定位需求,並詳細闡述了實現室內定位的技術原理, 及室內定位評測體係
下一個十年,智能人機交互、多模態融合、結合領域需求的 NLP 解決方案建設、知識圖譜結合落地場景等將會有突破性變化
自然語言處理技術的應用和研究領域發生了許多有意義的標誌性事件,技術進展方麵主要體現在預訓練語言模型、跨語言 NLP/無監督機器翻譯、知識圖譜發展 + 對話技術融合、智能人機交互、平台廠商整合AI產品線
NVIDIA解決方案架構師王閃閃講解了BERT模型原理及其成就,NVIDIA開發的Megatron-BERT
基於內容圖譜結構化特征與索引更新平台,在結構化方麵打破傳統的數倉建模方式,以知識化、業務化、服務化為視角進行數據平台化建設,來沉澱內容、行為、關係圖譜,目前在優酷搜索、票票、大麥等場景開始進行應用
通過使用仿真和量化指標,使基準測試能夠通用於許多操作領域,但又足夠具體,能夠提供係統的有關信息
優酷智能檔突破“傳統自適應碼率算法”的局限,解決視頻觀看體驗中高清和流暢的矛盾
姚霆指出,當前的多模態技術還是屬於狹隘的單任務學習,整個訓練和測試的過程都是在封閉和靜態的環境下進行,這就和真實世界中開放動態的應用場景存在一定的差異性
Tube Feature Aggregation Network(TFAN)新方法,即利用時序信息來輔助當前幀的遮擋行人檢測,目前該方法已在 Caltech 和 NightOwls 兩個數據集取得了業界領先的準確率
根據各種指法的具體特點,對時頻網格圖、時域網格圖、頻域網格圖劃分出若幹個不同的計算區域,並以每個計算區域的均值與標準差作為指法自動識別的特征使用,用於基於機器學習方法的指法自動識別